# A Certain Subclass of Multivalent Functions Involving Higher-Order Derivatives 

H. M. Srivastava ${ }^{\text {a }}$, Rabha M. El-Ashwah ${ }^{\text {b }}$, Nicoleta Breaz ${ }^{\text {c }}$<br>${ }^{a}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada and<br>China Medical University, Taichung 40402, Taiwan, Republic of China<br>${ }^{b}$ Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt<br>${ }^{c}$ Department of Mathematics, Faculty of Science, "1 Decembrie 1918" University of Alba Iulia, Street Nicolae Iorga 11-13, R-510009 Alba Iulia, Alba, România


#### Abstract

In this paper we introduce and study a new class of analytic and $p$-valent functions involving higher-order derivatives. For this $p$-valent function class, we derive several interesting properties including (for example) coefficient inequalities, distortion theorems, extreme points, and the radii of close-to-convexity, starlikeness and convexity. Several applications involving an integral operator are also considered. Finally, we obtain some results for the modified Hadamard product of the functions belonging to the $p$-valent function class which is introduced here.


## 1. Introduction, Definitions and Motivation

Let $\mathcal{A}(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

A function $f(z) \in \mathcal{A}(p)$ is said to be in the class $\mathcal{U S T}(p, \alpha, \beta)$ of $p$-valent $\beta$-uniformly starlike functions of order $\alpha$ in $\mathbb{U}$ if and only if

$$
\begin{equation*}
\mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right) \geqq \beta\left|\frac{z f^{\prime}(z)}{f(z)}-p\right| \quad(z \in \mathbb{U} ;-p \leqq \alpha<p ; \beta \geqq 0) \tag{1.2}
\end{equation*}
$$

[^0]On the other hand, a function $f(z) \in \mathcal{A}(p)$ is said to be in the class $\mathcal{U C V}(p, \alpha, \beta)$ of $p$-valent $\beta$-uniformly convex functions of order $\alpha$ in $\mathbb{U}$ if and only if

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right) \geqq \beta\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| \quad(z \in \mathbb{U} ;-p \leqq \alpha<p ; \beta \geqq 0) \tag{1.3}
\end{equation*}
$$

The above-defined function classes $\mathcal{U S} \mathcal{T}(p, \alpha, \beta)$ and $\mathcal{U C \mathcal { V }}(p, \alpha, \beta)$ were introduced recently by Khairnar and More [10]. Various analogous classes of analytic and univalent or multivalent functions were studied in many papers (see, for example, [2], [4] and [9]).

We notice from the inequalities (1.2) and (1.3) that

$$
\begin{equation*}
f(z) \in \mathcal{U C} \mathcal{V}(p, \alpha, \beta) \Longleftrightarrow \frac{z f^{\prime}(z)}{p} \in \mathcal{U S T}(p, \alpha, \beta) \tag{1.4}
\end{equation*}
$$

Now, for each $f(z) \in \mathcal{A}(p)$, it is easily seen upon differentiating both sides of (1.1) $q$ times with respect to $z$ that

$$
\begin{equation*}
f^{(q)}(z)=\delta(p, q) z^{p-q}+\sum_{k=p+1}^{\infty} \delta(k, q) a_{k} z^{k-q} \quad\left(q \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} ; p>q\right) \tag{1.5}
\end{equation*}
$$

where, and in what follows, $\delta(p, q)$ denotes the $q$-permutations of $p$ objects $(p \geqq q \geqq 0)$, that is,

$$
\delta(p, q):=\frac{p!}{(p-q)!}= \begin{cases}p(p-1) \cdots(p-q+1) & (q \neq 0) \\ 1 & (q=0)\end{cases}
$$

which may also be identified with the notation $\{p\}_{q}$ for the descending factorial.
Let

$$
-\delta(p-q, m) \leqq \alpha<\delta(p-q, m), \quad \beta \geqq 0 \quad \text { and } \quad p>q+m \quad\left(p \in \mathbb{N} ; q, m \in \mathbb{N}_{0}\right)
$$

We then denote by $\mathcal{U} \mathcal{S}_{m}(p, q ; \alpha, \beta)$ the subclass of the $p$-valent function class $\mathcal{A}(p)$ consisting of functions $f(z)$ of the form (1.1), which also satisfy the following analytic criterion:

$$
\begin{equation*}
\mathfrak{R}\left(\frac{z^{m} f^{(q+m)}(z)}{f^{(q)}(z)}-\alpha\right) \geqq \beta\left|\frac{z^{m} f^{(q+m)}(z)}{f^{(q)}(z)}-\delta(p-q, m)\right| \quad(z \in \mathbb{U}) \tag{1.6}
\end{equation*}
$$

We also denote by $\mathcal{T}(p)$ the subclass of $\mathcal{A}(p)$ consisting of functions of the following form:

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geqq 0 ; p \in \mathbb{N}\right) \tag{1.7}
\end{equation*}
$$

Further, we define the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$ as follows:

$$
\begin{equation*}
\mathcal{U S T}_{m}(p, q ; \alpha, \beta)=\mathcal{U} \mathcal{S}_{m}(p, q ; \alpha, \beta) \cap \mathcal{T}(p) . \tag{1.8}
\end{equation*}
$$

For suitable choices of $p, q, m$ and $\beta$, we obtain the following known subclasses:
(i) It is easily verified that (see Liu and Liu [11] (with $\gamma=1$ and $n=1$ )

$$
\begin{gathered}
\operatorname{USS}_{m}(p, q, \alpha, 0)=\mathcal{A}_{1, p}^{*}(m, q, \alpha, 1) \\
\left(0 \leqq \alpha<\delta(p-q, m) ; p \in \mathbb{N} ; m, q \in \mathbb{N}_{0} ; p>q+m\right) ;
\end{gathered}
$$

(ii) We observe that (see Khairnar and More [10])

$$
\mathcal{U S T}_{1}(p, 0 ; \alpha, \beta)=\mathcal{U S T}(p, \alpha, \beta) \quad(-p \leqq \alpha<p ; \beta \geqq 0 ; p \in \mathbb{N})
$$

and

$$
\mathcal{U S T}_{1}(p, 1 ; \alpha, \beta)=\mathcal{U C V}(p, \gamma, \beta) \quad(-p \leqq \gamma=\alpha+1<p ; \beta \geqq 0 ; p \in \mathbb{N}) ;
$$

(iii) It is easy to see that (see Aouf [3] (with $\beta=1$ and $n=1$ ))

$$
\mathcal{U S T}_{1}(p, q, \alpha, 0)=\mathcal{S}_{1}(p, q, \alpha, 1) \quad\left(0 \leqq \alpha<p-q ; p \in \mathbb{N} ; q \in \mathbb{N}_{0} ; p>q+1\right)
$$

and

$$
\mathcal{U S T}_{1}(p, q, \alpha, 0)=\mathcal{C}_{1}(p, t, \gamma, 1) \quad(0 \leqq \alpha<p-q ; p, q \in \mathbb{N} ; p>q+1 ; t=q-1 ; \gamma=\alpha+1) ;
$$

(iv) We notice that (see Chen et al. [5] (with $n=1)$ )

$$
\mathcal{U S T}_{1}(p, q, \alpha, 0)=\mathcal{S}_{1}(p, q, \alpha) \quad\left(0 \leqq \alpha<p-q ; p \in \mathbb{N} ; q \in \mathbb{N}_{0} ; p>q+1\right)
$$

and

$$
\mathcal{U S T}_{1}(p, q, \alpha, 0)=\mathcal{C}_{1}(p, t, \gamma) \quad(0 \leqq \alpha<p-q ; p, q \in \mathbb{N} ; p>q+1 ; t=q-1 ; \gamma=\alpha+1) .
$$

In this paper we obtain several properties (including the coefficient inequalities, distortion theorems, extreme points, and the radii of close-to-convexity, starlikeness and convexity) of the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. We also consider some applications involving an integral operator. Finally, we obtain some results for the modified Hadamard product of functions in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$.

Various other papers were dedicated to the study of such aspects of analytic function theory as we have considered in this paper. For example, in the paper [1] several interesting properties of closed-to-convex functions with negative coefficients were investigated by using the familiar Sălăgean derivative operator, in the paper [8] a certain subclass of univalent functions with negative coefficients was introduced and studied by using a generalization of the Sălăgean derivative operator, and so on and so forth. Another class of analytic and multivalent functions was studied in the paper [12] by applying the Hadamard product (or convolution) and the widely-investigated Dziok-Srivastava operator, where the class was proved as being closed under convolution and some integral operators (see also the recent works [6], [14] and [15]).

## 2. Coefficient Estimates

Unless otherwise mentioned, we assume throughout this paper that

$$
-\delta(p-q, m) \leqq \alpha<\delta(p-q, m), \quad \beta \geqq 0, \quad q, m \in \mathbb{N}_{0}, \quad p \in \mathbb{N} \text { and } p>q+m .
$$

Our first result (Theorem 1 below) provides the coefficient inequalities for functions in the class $\mathcal{U} S_{m}(p, q ; \alpha, \beta)$.
Theorem 1. A function $f(z)$ of the form (1.1) is in the class $\mathcal{U} \mathcal{S}_{m}(p, q ; \alpha, \beta)$ if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q) a_{k} \leqq[\delta(p-q, m)-\alpha] \delta(p, q) . \tag{2.1}
\end{equation*}
$$

Proof. It is easy to show that

$$
\beta\left|\frac{z^{m} f^{(q+m)}(z)}{f^{(q)}(z)}-\delta(p-q, m)\right|-\mathfrak{R}\left(\frac{z^{m} f^{(q+m)}(z)}{f^{(q)}(z)}-\delta(p-q, m)\right) \leqq[\delta(p-q, m)-\alpha]
$$

which implies the result (2.1) asserted by Theorem 1.

Theorem 2. A necessary and sufficient condition for $f(z)$ of the form (1.7) to be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$ is that

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q) a_{k} \leqq[\delta(p-q, m)-\alpha] \delta(p, q) \tag{2.2}
\end{equation*}
$$

Proof. In view of Theorem 1, we need only to prove the necessity. If $f(z) \in \mathcal{U S} \mathcal{T}_{m}(p, q ; \alpha, \beta)$ and $z$ is a real number, then

$$
\frac{z^{m} f^{(q+m)}(z)}{f^{(q)}(z)}-\alpha \geqq \beta\left|\frac{z^{m} f^{(q+m)}(z)}{f^{(q)}(z)}-\delta(p-q, m)\right|
$$

By making some calculations and letting $z \rightarrow 1$ - along the real axis, we have the desired inequality (2.2).

## Remark 1.

(i) Taking $\beta=0$, Theorem 2 extends the result for the coefficient estimates related to the class $\mathcal{F}_{1, p}^{*}(m, q, \alpha, 1)$, which is due to Liu and Liu [11] (with $\gamma=1$ and $n=1$ );
(ii) Taking $q=0$ and $p=m=1$, Theorem 2 extends the result for the coefficient estimates related to the class $\mathcal{S T}{ }_{0}(\alpha, \beta)$, which is due to Frasin [7] (with $a_{1}=1$ );
(iii) Taking $p=m=1, q=t+1, t=0$ and $\alpha=\gamma-1$, Theorem 2 extends the result for the coefficient estimates related to the class $\mathcal{U C} \mathcal{T}_{0}(\gamma, \beta)$, which is due to Frasin [7] (with $a_{1}=1$ );
(iv) Taking $\beta=0$ and $m=1$, Theorem 2 extends the result for the coefficient estimates related to the class $\mathcal{S}_{1}(p, q, \alpha, 1)$, which is due to Aouf [3] (with $\beta=1$ and $n=1$ );
(v) Taking $\beta=0, m=1, q=t+1$ and $\alpha=\gamma-1$, Theorem 2 extends the result for the coefficient estimates related to the class $C_{1}(p, t, \gamma, 1)$, which is due to Aouf [3] (with $\beta=1$ and $n=1$ );
(vi) Taking $\beta=0$ and $m=1$, Theorem 2 extends the result for the coefficient estimates related to the class $\mathcal{S}(p, q, \alpha)$, which is due to Chen et al. [5] ( with $n=1$ );
(vii) Taking $\beta=0, m=1, q=t+1$ and $\alpha=\gamma-1$, Theorem 2 extends the result for the coefficient estimates related to the class $C(p, t, \gamma)$, which is due to Chen et al. [5] (with $n=1$ ).

Corollary 1. Let the function $f(z)$ defined by (1.7) be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Then

$$
\begin{equation*}
a_{k} \leqq \frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)} \quad(k \geqq p+1) \tag{2.3}
\end{equation*}
$$

The result is sharp for the functions $f_{k}(z)$ given by

$$
\begin{equation*}
f_{k}(z)=z^{p}-\frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)} z^{k} \quad(k \geqq p+1) . \tag{2.4}
\end{equation*}
$$

## 3. Distortion Theorems

Theorem 3. Let the function $f(z)$ defined by (1.7) be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Then, for $|z|=r<1$,

$$
\begin{equation*}
|f(z)| \geqq r^{p}-\frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)} r^{p+1} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leqq r^{p}+\frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)} r^{p+1}, \tag{3.2}
\end{equation*}
$$

The equalities in (3.1) and (3.2) are attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)} z^{p+1} \tag{3.3}
\end{equation*}
$$

at $z=r$ and $z=r e^{i(2 s+1) \pi}(s \in \mathbb{Z})$.
Proof. For $k \geqq p+1$, we have

$$
\begin{aligned}
& {[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)} \\
& \leqq[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q) .
\end{aligned}
$$

Now, using the hypothesis of Theorem 2 , we get

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} a_{k} \leqq \frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)} . \tag{3.4}
\end{equation*}
$$

Lastly, by using the form (1.7) of the function, the proof of Theorem 3 is completed.
Theorem 4. Let the function $f(z)$ defined by (1.7) be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Then, for $|z|=r<1$,

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geqq p r^{p-1}-\frac{(p+1)[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)} r^{p} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq p r^{p-1}+\frac{(p+1)[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)} r^{p} . \tag{3.6}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given by (3.3).

Proof. Using similar techniques as in our demonstration of Theorem 3, we get

$$
\sum_{k=p+1}^{\infty} k a_{k} \leqq \frac{(p+1)[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)}
$$

which leads us to the completion of the proof of Theorem 4.

Remark 2. Taking $\beta=0$, in the above theorems, we obtain results similar to those obtained by Liu and Liu [11] (with $\gamma=1$ and $n=1$ ).

## 4. Convex Linear Combinations

By applying Theorem 2, we can prove that our class is closed under convex linear combinations as a corollary of the next result.

Theorem 5. Let $\mu_{v} \geqq 0$ for $v=1,2, \cdots, l$ and

$$
\sum_{v=1}^{l} \mu_{v} \leqq 1
$$

If the functions $f_{v}(z)$ defined by

$$
\begin{equation*}
f_{v}(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k, v} z^{k} \quad\left(a_{k, v} \geqq 0 ; v=1,2, \cdots, l\right) \tag{4.1}
\end{equation*}
$$

are in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$ for every $v=1,2, \cdots, l$, then the function $f(z)$ given by

$$
f(z)=z^{p}-\sum_{k=p+1}^{\infty}\left(\sum_{v=1}^{l} \mu_{v} a_{k, v}\right) z^{k}
$$

is also in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$.
Proof. In order to proof this result, the assertion of Theorem 2 is used.

Theorem 6. Let $f_{p}(z)=z^{p}$ and

$$
\begin{equation*}
f_{k}(z)=z^{p}-\frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)} z^{k} \quad(k \geqq p+1) . \tag{4.2}
\end{equation*}
$$

Then $f(z)$ is in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$ if and only if it can be expressed in the following form:

$$
\begin{equation*}
f(z)=\sum_{k=p}^{\infty} \mu_{k} f_{k}(z) \tag{4.3}
\end{equation*}
$$

where

$$
\mu_{k} \geqq 0, \quad k \geqq p \quad \text { and } \quad \sum_{k=p}^{\infty} \mu_{k}=1
$$

Proof. The part related to sufficiency is easily proved by using again the assertion of Theorem 2. For the necessity condition, we can see that the function $f(z)$ can be expressed in the form (4.3) if we set

$$
\mu_{k}=\frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q) a_{k}}{[\delta(p-q, m)-\alpha] \delta(p, q)} \quad(k \geqq p+1)
$$

and

$$
\mu_{p}=1-\sum_{k=p+1}^{\infty} \mu_{k}
$$

such that $\mu_{p} \geqq 0$. This is already assured by Corollary 1 .

Corollary 2. The extreme points of the class $\mathcal{U S T} \mathcal{T}_{m}(p, q ; \alpha, \beta)$ are the functions $f_{p}(z)=z^{p}$ and

$$
f_{k}(z)=z^{p}-\frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)} z^{k} \quad(k \geqq p+1) .
$$

## 5. Radii of Close-to-Convexity, Starlikeness and Convexity

Theorem 7. Let the function $f(z)$ defined by (1.7) be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Then $f(z)$ is a p-valent close-to-convex function of order $\xi(0 \leqq \xi<p)$ for $|z| \leqq r_{1}(p, q ; \alpha, \beta ; \xi)$, where

$$
\begin{equation*}
r_{1}=\inf _{k \geqq p+1}\left\{\frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)}{[\delta(p-q, m)-\alpha] \delta(p, q)}\left(\frac{p-\xi}{k}\right)\right\}^{\frac{1}{k-p}} \tag{5.1}
\end{equation*}
$$

The result is sharp and the extremal function is given by (2.4).
Proof. By applying Corollary 1 and the form (1.7), we see that, for $|z| \leqq r_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leqq p-\xi \text { for }|z| \leqq r_{1}(p, q ; \alpha, \beta ; \xi) \tag{5.2}
\end{equation*}
$$

which completes the proof of Theorem 7.

Theorem 8. Let the function $f(z)$ defined by (1.7) be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Then $f(z)$ is a p-valent starlike function of order $\xi(0 \leqq \xi<p)$ for $|z| \leqq r_{2}(p, q, \alpha, \beta, \xi)$, where

$$
\begin{equation*}
r_{2}=\inf _{k \geq p+1}\left\{\frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)}{[\delta(p-q, m)-\alpha] \delta(p, q)}\left(\frac{p-\xi}{k-\xi}\right)\right\}^{\frac{1}{k-p}} \tag{5.3}
\end{equation*}
$$

The result is sharp and the extremal function is given by (2.4).
Proof. Using the same steps as in the proof of Theorem 7, it is seen that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-p\right| \leqq p-\xi \quad\left(|z| \leqq r_{2}(p, q, \alpha, \beta, \xi)\right) \tag{5.4}
\end{equation*}
$$

which evidently proves Theorem 8.

Corollary 3. Let the function $f(z)$ defined by (1.7) be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Then $f(z)$ is a p-valent convex function of order $\xi(0 \leqq \xi<p)$ for $|z| \leqq r_{3}(p, q, \alpha, \beta, \xi)$, where

$$
\begin{equation*}
r_{3}=\inf _{k \geqq p+1}\left\{\frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)}{[\delta(p-q, m)-\alpha] \delta(p, q)}\left(\frac{p(p-\xi)}{k(k-\xi)}\right)\right\}^{\frac{1}{k-p}} \tag{5.5}
\end{equation*}
$$

The result is sharp and the extremal function is given by (2.4).

## 6. Integral Operators

In view of Theorem 2, we see that the function:

$$
z^{p}-\sum_{k=p+1}^{\infty} d_{k} z^{k}
$$

is in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$ as long as $0 \leqq d_{k} \leqq a_{k}$ for all $k \geqq p+1$, where $a_{k}$ is the coefficient corresponding to a function which is in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. We are thus led to the next theorem.

Theorem 9. Let the function $f(z)$ defined by (1.7) be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Also let $c$ be a real number such that $c>-p$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \quad(c>-p) \tag{6.1}
\end{equation*}
$$

also belongs to the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$.
Proof. From the representation (6.1) of $F(z)$, it follows that

$$
F(z)=z^{p}-\sum_{k=p+1}^{\infty} d_{k} z^{k}
$$

where

$$
d_{k}=\left(\frac{c+p}{k+c}\right) a_{k} \leqq a_{k} \quad(k \geqq p+1)
$$

which completes the proof of Theorem 9.

Putting $c=1-p$ in Theorem 9, we get the following corollary.
Corollary 4. Let the function $f(z)$ defined by (1.7) be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Also let $F(z)$ be defined by

$$
\begin{equation*}
F(z)=\frac{1}{z^{1-p}} \int_{0}^{z} \frac{f(t)}{t^{p}} d t \tag{6.2}
\end{equation*}
$$

Then $F(z) \in \mathcal{U S T}_{m}(p, q ; \alpha, \beta)$.
Remark 3. The converse of Theorem 9 is not true. This observation leads to the following result involving the radius of $p$-valence.

Theorem 10. Let the function

$$
F(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geqq 0\right)
$$

be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Also let $c$ be a real number such that $c>-p$. Then the function $f(z)$ given by (6.1) is $p$-valent in $|z|<R_{p}^{*}$, where

$$
\begin{equation*}
R_{p}^{*}=\inf _{k \leq p+1}\left\{\frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)}{[\delta(p-q, m)-\alpha] \delta(p, q)}\left(\frac{p(c+p)}{k(c+k)}\right)\right\}^{\frac{1}{k-p}} . \tag{6.3}
\end{equation*}
$$

The result is sharp.
Proof. From the definition (6.1), we have

$$
f(z)=\frac{z^{1-c}\left[z^{c} F(z)\right]^{\prime}}{c+p}=z^{p}-\sum_{k=p+1}^{\infty} \frac{k+c}{c+p} a_{k} z^{k} \quad(c>-p)
$$

In order to obtain the required result, it suffices to show that

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leqq p \quad \text { for } \quad|z|<R_{p}^{*}
$$

where $R_{p}^{*}$ is given by (6.3). Making use of Theorem 2, we get that the required inequality is true if

$$
\begin{gathered}
|z| \leqq\left(\frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)}{[\delta(p-q, m)-\alpha] \delta(p, q)}\left(\frac{p(c+p)}{k(c+k)}\right)\right)^{\frac{1}{k-p}} \\
(k \geqq p+1) .
\end{gathered}
$$

The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(c+k)[\delta(p-q, m)-\alpha] \delta(p, q)}{(c+p)[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)} z^{k} \quad(k \geqq p+1) . \tag{6.5}
\end{equation*}
$$

## 7. Modified Hadamard Products

Let the functions $f_{v}(z)(v=1,2)$ be defined by (4.1). The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{p}-\sum_{k=p+1}^{\infty} a_{k, 1} a_{k, 2} z^{k} \tag{7.1}
\end{equation*}
$$

Theorem 11. Let the functions $f_{v}(z) \quad(v=1,2)$, defined by (4.1) be in the class $\mathcal{U S T}_{m}(p, q ; \alpha, \beta)$. Then $\left(f_{1} * f_{2}\right)(z) \in \mathcal{U S T}_{m}(p, q ; \eta, \beta)$, where

$$
\begin{equation*}
\eta=\delta(p-q, m)-\frac{[\delta(p-q, m)-\alpha]^{2}(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]]^{2} \delta(p+1, q)-[\delta(p-q, m)-\alpha]^{2} \delta(p, q)} . \tag{7.2}
\end{equation*}
$$

The result is sharp when

$$
f_{1}(z)=f_{2}(z)=f(z)
$$

where the function $f(z)$ is given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)} z^{p+1} . \tag{7.3}
\end{equation*}
$$

Proof. Employing the technique used earlier by Schild and Silverman [13], we need to find the largest $\eta$ such that

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\eta]] \delta(k, q)}{[\delta(p-q, m)-\eta] \delta(p, q)} a_{k, 1} a_{k, 2} \leqq 1 \tag{7.4}
\end{equation*}
$$

Using the inequalities for the coefficients of the functions in the class $\mathcal{U S T}_{m}(p, q ; \eta, \beta)$, and by applying the Cauchy-Schwarz inequality, it is sufficient to show that

$$
\begin{equation*}
\eta \leqq \delta(p-q, m)-\frac{[\delta(p-q, m)-\alpha]^{2}(1+\beta)[\delta(k-q, m)-\delta(p-q, m)] \delta(p, q)}{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]]^{2} \delta(k, q)-[\delta(p-q, m)-\alpha]^{2} \delta(p, q)} . \tag{7.5}
\end{equation*}
$$

Now, defining the function $G(k)$ by

$$
\begin{equation*}
G(k)=\delta(p-q, m)-\frac{[\delta(p-q, m)-\alpha]^{2}(1+\beta)[\delta(k-q, m)-\delta(p-q, m)] \delta(p, q)}{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]]^{2} \delta(k, q)-[\delta(p-q, m)-\alpha]^{2} \delta(p, q)}, \tag{7.6}
\end{equation*}
$$

we see that $G(k)$ is an increasing function of $k(k \geqq p+1)$, which obviously completes the proof.

Using arguments similar to those used in the proof of Theorem 11, we obtain the following result.
Theorem 12. Let the function $f_{1}(z)$ defined by (4.1) be in the class $\mathcal{U S T}{ }_{m}(p, q ; \alpha, \beta)$. Suppose also that the function $f_{2}(z)$ defined by (4.1) be in the class $\mathcal{U S T}_{m}(p, q ; \varphi, \beta)$. Then

$$
\left(f_{1} * f_{2}\right)(z) \in \mathcal{U S T}_{m}(p, q ; \zeta, \beta)
$$

where

$$
\begin{equation*}
\zeta=\delta(p-q, m)-\frac{[\delta(p-q, m)-\alpha][\delta(p-q, m)-\varphi](1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]][(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\varphi]] \delta(p+1, q)-\Omega} \tag{7.7}
\end{equation*}
$$

with

$$
\Omega=[\delta(p-q, m)-\alpha][\delta(p-q, m)-\varphi] \delta(p, q) .
$$

The result is sharp for the functions $f_{v}(z)(v=1,2)$ given by

$$
\begin{equation*}
f_{1}(z)=z^{p}-\frac{[\delta(p-q, m)-\alpha] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(p+1, q)} z^{p+1} \tag{7.8}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z^{p}-\frac{[\delta(p-q, m)-\varphi] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\varphi]] \delta(p+1, q)} z^{p+1} . \tag{7.9}
\end{equation*}
$$

Theorem 13. Let the functions $f_{v}(z)(v=1,2)$ defined by (4.1) be in the class $\mathcal{U S T} \mathcal{T}_{m}(p, q ; \alpha, \beta)$. Then the function $h(z)$ given by

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=p+1}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{7.10}
\end{equation*}
$$

belongs to the class $\mathcal{U S T}_{m}(p, q ; \kappa, \beta)$, where

$$
\begin{align*}
\kappa & =\delta(p-q, m) \\
& -\frac{2[\delta(p-q, m)-\alpha]^{2}(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)] \delta(p, q)}{[(1+\beta)[\delta(p-q+1, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]]^{2} \delta(p+1, q)-2[\delta(p-q, m)-\alpha]^{2} \delta(p, q)} . \tag{7.11}
\end{align*}
$$

The result is sharp for

$$
f_{1}(z)=f_{2}(z)=f(z)
$$

where the function $f(z)$ is given by (7.3).
Proof. If we combine the assertions of Theorem 2 for both of the functions $f_{1}(z)$ and $f_{2}(z)$, we get

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{1}{2}\left(\frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)}{[\delta(p-q, m)-\alpha] \delta(p, q)}\right)^{2}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \leqq 1 \tag{7.12}
\end{equation*}
$$

Therefore, we need to find the largest $\kappa=\kappa(p, q, \alpha, \beta)$ such that

$$
\begin{align*}
& \frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\kappa]] \delta(k, q)}{[\delta(p-q, m)-\kappa] \delta(p, q)} \\
& \quad \leqq \frac{1}{2}\left(\frac{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]] \delta(k, q)}{[\delta(p-q, m)-\alpha] \delta(p, q)}\right)^{2} \tag{7.13}
\end{align*}
$$

Since $D(k)$ given by

$$
\begin{aligned}
& D(k)=\delta(p-q, m) \\
& \quad-\frac{2[\delta(p-q, m)-\alpha]^{2}(1+\beta)[\delta(k-q, m)-\delta(p-q, m)] \delta(p, q)}{[(1+\beta)[\delta(k-q, m)-\delta(p-q, m)]+[\delta(p-q, m)-\alpha]]^{2} \delta(k, q)-2[\delta(p-q, m)-\alpha]^{2} \delta(p, q)}
\end{aligned}
$$

is an increasing function of $k \quad(k \geqq p+1)$, we obtain $\kappa \leqq D(p+1)$. The proof of Theorem 13 is thus completed.

## References

[1] M. Acu and I. Dorca, On some close to convex functions with negative coefficients, Filomat 21 (2007), 121-131.
[2] O. Altintaş, H. Irmak and H. M. Srivastava, Neighborhoods for certain subclasses of multivalently analytic functions defined by using a differential operator, Comput. Math. Appl. 55 (2008), 331-338.
[3] M. K. Aouf, Certain classes of multivalent functions with negative coefficients defined by using a differential operator, J. Math. Appl. 30 (2008), 5-21.
[4] N. Breaz and R. M. El-Ashwah, Quasi-Hadamard product of some uniformly analytic and p-valent functions with negative coefficients, Carpathian J. Math. 30 (2014), 39-45.
[5] M.-P. Chen, H. Irmak and H. M. Srivastava, Some multivalent functions with negative coefficients defined by using a differential operator, Pan Amer. Math. J. 6 (2) (1996), 55-64.
[6] N. E. Cho, I. H. Kim and H. M. Srivastava, Sandwich-type theorems for multivalent functions associated with the SrivastavaAttiya operator, Appl. Math. Comput. 217 (2010), 918-928.
[7] B. A. Frasin, Quasi-Hadamard product of certain classes of uniformly analytic functions, Gen. Math. 16 (2) (2007), 29-35.
[8] A. R. Juma and S. R. Kulkarni, On univalent functions with negative coefficients by using generalized Sălăgean operator, Filomat 21 (2007), 173-184.
[9] S. Kanas and H. M. Srivastava, Linear operators associated with $k$-uniformly convex functions, Integral Transforms Spec. Funct. 9 (2000), 121-132.
[10] S. M. Khairnar and M. More, On a subclass of multivalent $\beta$-uniformly starlike and convex functions defined by a linear operator, IAENG Internat. J. Appl. Math. 39 (3) (2009), Article ID IJAM_39_06.
[11] M.-S. Liu and Y.-Y. Liu, Certain subclass of $p$-valent functions with negative coefficients, Southeast Asian Bull. Math. 36 (2012), 275-285.
[12] Sh. Najafzadeh, S. R. Kulkarni and D. Kalaj, Application of convolution and Dziok-Srivastava linear operators on analytic and $p$-valent functions, Filomat 20 (2006), 115-124.
[13] A. Schild and H. Silverman, Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae-Curie Skłodowska Sect. A 29 (1975), 109-116.
[14] J. Sokół, K. I. Noor and H. M. Srivastava, A family of convolution operators for multivalent analytic functions, European J. Pure Appl. Math. 5 (2012), 469-479.
[15] H. M. Srivastava and S. Bulut, Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure, Appl. Math. Comput. 218 (2012), 6511-6518.


[^0]:    2010 Mathematics Subject Classification. Primary 30C45, 30C50 ; Secondary 42A85
    Keywords. Analytic functions; Multivalent functions; Starlike functions; Convex functions; Uniformly starlike functions; Uniformly convex functions; Higher-order derivatives; Cauchy-Schwarz inequality; Modified Hadamard product.

    Received: 22 July 2014; Accepted: 11 August 2014
    Communicated by Dragan S. Djordjević
    Email addresses: harimsri@math.uvic.ca (H. M. Srivastava), r_elashwah@yahoo.com (Rabha M. El-Ashwah), nicoletabreaz@yahoo.com (Nicoleta Breaz)

